

Contents lists available at ScienceDirect

International Journal of Mass Spectrometry

journal homepage: www.elsevier.com/locate/ijms

Mass spectrometry analysis of metals, other elements and lipids in urine samples of Fabry disease patients

Christiane Auray-Blais^{a,*}, René Gagnon^a, Usarat Kumtabtim^{b,c}, Aimé Ntwari^a, J. Sabine Becker^b

^a Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada

^b BrainMet Laboratory, Central Division of Analytical Chemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany

^c Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

ARTICLE INFO

Article history: Received 3 November 2010 Received in revised form 4 February 2011 Accepted 8 February 2011 Available online 15 February 2011

Keywords: Fabry disease Biomarker Mass spectrometry Urine Metal Globotriaosylceramide (Gb₃) Globotriaosylsphingosine (lyso-Gb₃)

ABSTRACT

Fabry disease is an X-linked lysosomal storage disorder caused by deficiency of alpha-galactosidase A leading to accumulation of globotriaosylceramide in tissues and biological fluids of affected patients. Mass spectrometry is a powerful tool to quantify components of interest in biological fluids. Our study had four objectives: (1) to devise an ICP-MS methodology for quantitative determination of metal and other element concentrations in urine specimens of Fabry patients; (2) to analyze urinary Gb₃/creatinine and lyso-Gb₃/creatinine in these patients; (3) to evaluate correlations between urinary lipid concentrations versus metals and other elements in Fabry patients and healthy controls; (4) to evaluate which metals and other elements discriminate groups of patients and controls according to gender and treatment. We found that the excretion of barium was elevated in Fabry females and calcium and strontium levels were lower in Fabry males compared to controls. Preliminary results for treated and untreated Fabry disease patients indicate that ERT seems to have little effect on urine elements analyzed. Statistically significant correlations were established between urinary lyso-Gb₃/creatinine, Gb₃/creatinine and levels of magnesium, copper, mercury, nickel, lead, barium and calcium, whereas no significant correlations were found for the other 15 elements examined. Our results indicate that further studies are warranted in larger cohorts of Fabry disease patients for the investigation of possible roles of metals and other elements.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Trace metals (e.g., zinc, copper and iron) are involved in cellular processes (e.g., proliferation, myelinization and signalling) and are essential for growth and functioning of the brain [1]. Approximately one-third of all proteins are believed to require metal cations as cofactors with catalytical functions [1]. The determination of essential and beneficial trace metals (such as copper, zinc, iron, manganese, molybdenum, magnesium, and others), metalloids (such as selenium), or non-metals (like sulfur, phosphorus, iodine, and chlorine), which are of vital importance in biological systems, is a main issue in modern bioanalytics. Certain trace metals protect against many diseases and from reactive oxygen species (ROS) [2]. The investigation of body fluids with respect to nutrient (essential) elements and toxic elements – which are challenging topics for analytical chemistry – requires the determination of concentrations at the trace and ultratrace level [3]. Urine is the most frequently investigated medical matrix [4–11]. Samples are collected easily in a non invasive manner from patients and controls. ICP-MS (inductively coupled plasma mass spectrometry), as a universal and sensitive analytical mass spectrometry technique, possesses very low limits of detection, as demonstrated with the analysis of physiological fluids, such as urine [4,5]. The analysis of biological fluids by this technique may be useful in the study of the pathophysiology of lysosomal storage disorders (LSDs).

LSDs are a group of nearly 45 disorders presenting variable phenotypes. LSDs caused by the same enzyme deficiency may present clinically in the newborn period or as late as adult life, owing to the variable effects of different mutations [12]. Most LSDs are associated with accumulation of substrates in biological fluids and secondary biochemical changes resulting from lysosomal storage. While the extent and severity of LSDs depend on the type and amount of accumulated substrate, almost all disorders are progressive [13]. Our interest has developed in the identification of disease-specific biological changes in blood or urine that are reli-

^{*} Corresponding author at: Service of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, CHUS, Hospital Fleurimont, 3001, 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4. Tel.: +1 819 564 5253: fax: +1 819 564 5217.

E-mail address: Christiane.auray-blais@usherbrooke.ca (C. Auray-Blais).

^{1387-3806/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ijms.2011.02.007

Nomenclature								
CHUS	Centre hospitalier universitaire de Sherbrooke							
ERT	Enzyme replacement therapy							
α-gal A	Alpha-galactosidase A							
Gb ₃	Globotriaosylceramide							
GSG	SG Glucosylsphingosine							
HPLC	High performance liquid chromatography							
ICP-MS	Inductively coupled plasma mass spectrometry							
ICP-QMS	Quadrupole-based inductively coupled plasma							
	mass spectrometry							
IS	Internal standard							
ISE	Internal standard element							
Isotopes	⁷ Li (lithium), ¹¹ B (boron), ²³ Na (sodium), ²⁴ Mg							
	(magnesium), ³¹ P (phosphorus), ³⁹ K (potassium),							
	⁴⁰ Ca (calcium), ⁴⁷ Ti (titanium), ⁵² Cr (chromium),							
	⁵⁶ Fe (iron), ⁶⁰ Ni (nickel), ⁶³ Cu (copper), ⁶⁴ Zn							
	(zinc), ⁷⁵ As (arsenic), ⁸² Se (selenium), ⁸⁵ Rb (rubid-							
	ium), ⁸⁸ Sr (strontium), ⁹⁸ Mo (molybdenum), ¹⁰³ Rh							
	(rhodium), ¹¹⁸ Sn (tin), ¹³⁷ Ba (barium), ²⁰² Hg (mer-							
	cury), ²⁰⁸ Pb (lead)							
LA-ICP-N	IS Laser ablation-inductively coupled plasma mass							
	spectrometry							
LC-MS/N	IS liquid chromatography-tandem mass spectrom-							
	etry							
LOD	Limit of detection							
LSDs	Lysosomal storage disorders							
Lyso-Gb	3 Globotriaosylsphingosine							
REB	Research Ethics Board							
TOF-MS	Time-of-flight mass spectrometry							
QTOF-M	S Quadrupole time-of-flight mass spectrometry							

ably predictive of clinical severity and which play an important role in monitoring the effectiveness of the treatment of patients.

Fabry disease (OMIM 301500) is an X-linked lysosomal storage disorder affecting both males and females to various degrees. It is caused by deficiency of alpha-galactosidase A (α -gal A, EC 3.2.1.22) leading to the accumulation of a neutral glycosphingolipid, globotriaosylceramide (Gb₃), in the walls of small blood vessels, nerves, dorsal root ganglia, renal tubular and epithelial cells and cardiomyocytes [14]. Advancements in technology have made analysis of Gb₃ levels in urine feasible and reliable for mass and high-risk screening (aimed at a specific population at increased risk for a given disorder) [15-20], as well as for monitoring patients on treatment by enzyme replacement therapy (ERT) [21,22]. We recently developed and validated a tandem mass spectrometry (MS/MS) methodology for quantitative analysis of another biomarker, lyso-Gb₃ (globotriaosylsphingosine) a deacylated Gb3, in urine samples of Fabry patients [23]. We established correlations between Gb₃/creatinine, lyso-Gb₃/creatinine excretion and measurements of kidney function in Fabry disease patients [23]. Considering the likelihood of complex secondary metabolic abnormalities in patients with Fabry disease, we undertook an investigation of the levels of certain metals and other elements in the urine of patients with the disease. Our study had four objectives: (1) to devise an ICP-MS methodology for quantitative determination of metal and other element concentrations in urine specimens of Fabry patients; (2) to analyze urinary Gb₃/creatinine and lyso-Gb₃/creatinine in the patients; (3) to evaluate correlations between urinary lipid concentrations versus metals and other elements in Fabry patients and healthy controls; (4) to evaluate which metals and other elements discriminate groups of patients and controls according to gender and treatment.

Table 1

ICP-MS operating	; conditions and	measurement	parameters.
------------------	------------------	-------------	-------------

Rf power (W)	1480
Sample uptake rate (mL/min)	0.3
Gas flow rate (L/min)	
Coolant gas flow	14
Auxiliary gas flow	1.4
Nebulizer gas flow	1.1
Ion sampling depth (mm)	5
Ion lens setting	Adjusted to obtain maximum ion
	intensity
Nebulizer	Concentric nebulizer
Spray chamber	Scott-type double pass spray chamber
Sample/skimmer diameter orifice	Nickel 1.0 mm/0.4 mm
Scanning mode	Peak-hopping
Dwell time (ms)	50
Integration mode	Peak area
Points per spectral peak	1
Isotopes measured	⁷ Li, ¹¹ B, ²³ Na, ²⁴ Mg, ³¹ P, ³⁹ K, ⁴⁰ Ca, ⁴⁷ Ti,
	⁵² Cr, ⁵⁶ Fe, ⁶⁰ Ni, ⁶³ Cu, ⁶⁴ Zn, ⁷⁵ As, ⁸² Se,
	⁸⁵ Rb, ⁸⁸ Sr, ⁹⁸ Mo, ¹⁰³ Rh, ¹¹⁸ Sn, ¹³⁷ Ba,
	202 Hg 208 ph

2. Materials and methods

2.1. Ethics approval

This project was approved by the Research Ethics Board (REB) of the Faculty of Medicine and Health Sciences and the Centre hospitalier universitaire de Sherbrooke (CHUS) and other REBs from collaborators.

2.2. Urine specimen collection from Fabry patients and controls

After informed consent was obtained, random urine samples were collected from Fabry patients in whom the diagnosis had been confirmed by demonstrating marked enzyme deficiency in leucocytes or by mutation analysis. All samples were received in a coded manner, with the key code kept at each collaborating centre. Control urine samples from 8 healthy subjects (4 males and 4 females; aged 18–59 years) were analyzed to establish normal reference values. We analyzed urine samples from 27 Fabry disease patients: 13 males (aged 17–59 years) and 14 females (aged 23–66 years). Eight of the males and 5 of the females were receiving enzyme replacement therapy (ERT) with either agalsidase-alpha 0.2 mg/kg/2 weeks (ReplagalTM, Shire Human Genetic Therapies Inc., Lexington, MA) or agalsidase-beta 1.0 mg/kg/2 weeks (Fabrazyme[®], Genzyme Corporation, Cambridge, MA).

2.3. Chemicals and reagents

All chemicals used were analytical reagent grade. Sub-boiling distillation of nitric acid from Merck was used. High purity deionized water (18.2 M Ω cm) obtained from a Milli-Q system was used for all dilution of mixed metal standard solution and urine samples. The working standard solutions were prepared in 1% HNO₃ by serial dilution of ICP multi-element standard stock solution IV (Merck) immediately prior to use. Rh single element standard solution (Merck CertiPrep) was used as the internal standard element (ISE).

A standard mixture of total globotriaosylceramide isoforms, HPLC reagents and solvents were purchased and prepared as previously described [15]. $C_{17:0}$ -Gb₃ isoform internal standard (IS) was purchased from Matreya (Pleasant Gap, PA). Creatinine standards were purchased from Sigma (St. Louis, MO, USA). A stock solution of creatinine, 10 mmol/L in water, was prepared and the following reference standards were used: 0.1, 1, 4 and 10 μ mol/4 mL. Deuterated creatinine methyl-[2H]creatinine (d₃-creat) (CDN Iso-

Fig. 1. Scoring plot of untreated female Fabry patients (UFF, n=9, samples 5–13) versus female controls (FC, n=4, samples 1–4).

topes, Pointe-Claire, Que., Canada) was the internal standard used for the creatinine quantification at $40 \,\mu g/20 \,\mu L$ in water and was stored at $4 \,^{\circ}$ C. Filter papers were Whatman no. 903.

For lyso-Gb₃ analysis, acetonitrile LC–MS grade was purchased from Fisher Scientific (Fair Lawn, NJ). Laboratory water was purified to ultra pure grade with the use of a Nanopure Infinity water purification system (Ultrapure, 18.3 M Ω , Barnstead, Dubuque, IA). lyso-Globotriaosylsphingosine (Lyso-Gb₃ from pig) and 1- β -Dglucosylsphingosine (GSG from plant) were obtained from Matreya.

2.4. Processing and analysis of urinary specimens

Prior to ICP-MS determination, frozen urine samples from controls and Fabry patients were gradually thawed, first at 4° C in a refrigerator for several hours and finally at room temperature. Urine samples were diluted, acidified (to 1% HNO₃ final concentration) and spiked with the internal standard (Rh, 10 ng/mL final concentration). The diluted urine samples were analyzed for each element after external calibration [8–11].

Urine samples for Gb₃ analysis were deposited on a Whatman 903 filter paper, left to dry at room temperature overnight. Samples were processed as previously described [15,18]. Briefly, a 5-cm diameter filter paper disc was punched from each sample and 1 μ g of C_{17:0}-Gb₃ and 20 μ g of d₃-creat were added as internal standards. Elution was performed by rotary shaking filter papers with 4 ml of methanol in glass vials for 60 min. Ten microliters were injected into the LC–MS/MS system.

For lyso-Gb₃, aliquots (500 μ l) of well-mixed urine samples from Fabry patients and controls were transferred to screw glass tubes with phenolic caps along with 500 μ l of glucosylsphingosine (GSG) internal standard at 4 nmol/L in methanol. Samples were processed using solid phase extraction according to a previously described methodology [23].

Waters (Waters Corp., Milford, MA, USA) QuanLynx software was used to quantify Gb₃/creatinine and lyso-Gb₃/creatinine data.

2.5. Mass spectrometry instrumentation

A quadrupole based inductively coupled plasma mass spectrometer (ICP-QMS, Agilent 7500, Tokyo, Japan) operating at standard mode was used for the measurement of the urinary concentrations of metals and other elements. The ICP mass spectrometer was equipped with a Cetac ASX-510 Autosampler (Cetac Technologies, Omaha, USA) for automation of the analyses. The experimental conditions were optimized to obtain the highest signal/background ratio for ¹⁰³Rh⁺ (concentration: 10 µg/L), the oxide ion ratios (MO⁺) less than 3% and minimum double charge (M²⁺) ions. Optimized experimental parameters of ICP-MS are summarized in Table 1.

Analysis of Gb₃ [18], lyso-Gb₃ and creatinine [23] was performed on a Quattro micro tandem quadrupole instrument (Waters Corp.) coupled to an Alliance 2795XE system (Waters Corp.) (LC–MS/MS) with the electrospray ionization operating in positiveion mode (ES+). Mass spectrometry and high performance liquid chromatography parameters were previously reported for Gb₃ [18] and lyso-Gb₃ [23].

2.6. Statistical analysis

Correlation analysis was performed on urinary concentrations of elements and lipids using the CORR Procedure with the SAS soft-

Fig. 2. S-plot statistical analysis to target specific isotopes of interest from 21 different isotopes studied in untreated female Fabry patients (n = 9) and controls (n = 4).

ware (Statistical Analysis System, version 9.1.3, SAS Institute Inc., Cary, NC, USA). Multivariate analysis using logarithm concentrations of Gb₃/creatinine or lyso-Gb₃/creatinine as the dependent variable *versus* element concentrations, gender and treatment as independent variables was performed by Mixed Procedure (SAS software) in Fabry patients and controls. Additional multivariate data analysis was performed with EZinfo software (Umetrics) using orthogonal partial least squares discriminant analysis (OPLS-DA). This analysis allowed us to define which element discriminates groups of interest. Potassium levels were not used for the multivariate analysis with EZInfo.

3. Results and discussion

Urine was investigated with respect to elemental and molecular composition by ICP-MS combined to biomolecular mass spectrometry. ICP-MS with multi-element capability allows the measurements of metals, metalloids and other selected elements over a wide dynamic range of over seven orders of magnitude. We found that the concentrations measured in urine samples varied from 0.4 ng/mL for Hg and up to 4 mg/mL for sodium. In general, the alkali metals, Na and K, the earth alkali metal, Ca, and the non-metal, phosphorus, are detected with higher concentrations at μ g/mL up to mg/mL level. The concentration of the lowest atomic weight metal, Li, measured by ICP-MS varied between 30 and 800 ng/mL, and the heavy toxic metal, Hg, was found within the 0.4 and 4 ng/mL range. The limits of detection (LODs) were 0.02 ng/mL, 0.09 ng/mL and 0.01 ng/mL for Hg, Se and As, respectively.

Results of quantitative determination of urinary boron, lithium, sodium, magnesium, phosphorus, potassium, calcium, titanium, chromium, iron, nickel, copper, zinc, arsenic, selenium, rubidium, strontium, molybdenum, tin, barium and mercury by ICP-MS, as well as liquid chromatography coupled to tandem mass spectrometry analysis of lyso-Gb₃ and Gb₃ urinary excretion values, are presented in Table 2.

Results of multivariate data analysis with EZinfo software using OPLS-DA, which enables the separation of predictive from nonpredictive (orthogonal) variation, are presented in Figs. 1 and 2. Scoring plots allowed us to see which observations are similar (so near each other) and which are dissimilar (so far away of each other). Fig. 1 presents the scoring plot of untreated female Fabry patients (n = 9) versus controls (n = 4). These heterozygous patients were clearly discriminated from controls. An S-plot of this statistical analysis allowed us to target two specific isotopes, barium and lead which were different from the 19 other isotopes under study (Fig. 2).

We used a graphical representation, a trend plot, which reveals the general pattern of level change in patients and controls for a specific element under study. The trend plot for barium is shown in Fig. 3 for untreated female Fabry patients (n=9) versus female controls (n=4). Urinary barium levels were found to be lower in all controls.

Fig. 4 presents the scoring plot results for untreated male Fabry patients (n = 5) versus controls (n = 4). Similar to females, the scoring plot provides a clear discrimination between untreated male Fabry patients and controls. Fig. 5 presents the S-plot for male controls (n = 4) and untreated male Fabry patients (n = 5) for all 21 isotopes. We found that calcium and strontium were clearly discriminated

Table 2

ICP-MS analysis of metals and other elements and liquid chromatography coupled to tandem mass spectrometry of Gb₃ and lyso-Gb₃ in urine samples of male and female Fabry patients and controls. Li, B and all others are expressed as ng/mL. Only Na, Mg, P, K, Ca are expressed as µg/mL. All values at 0 are below the limits of detection (LOD). Status: Female controls (FC); Male controls (MC) Untreated female Fabry patients (UFF); Treated female Fabry patients (TFF); Untreated male Fabry patients (UMF); Treated male Fabry patients (TMF).

Sample ID	Age	Status	LGb ₃	Gb3	Li	В	Na	Mg	Р	К	Ca	Ti	Cr
Sample 1	30	FC	0	n/a	164.5	338.1	2373.1	71.5	343.0	2653.5	44.5	517.2	33.2
Sample 2	42	FC	0	n/a	30.8	LOD	253.7	5.0	16.1	349.9	4.2	51.0	7.7
Sample 3	48	FC	0	n/a	110.7	235.5	1240.3	50.4	222.3	1466.4	33.3	381.4	21.8
Sample 4	59	FC	0	n/a	152.3	1129.7	2277.5	40.1	134.5	3056.9	21.2	240.0	20.4
Sample 5	26	UFF	30	68	804.2	1685.0	4277.6	100.5	369.2	Very high	75.8	976.0	78.9
Sample 6	27	UFF	50	127	396.1	1966.5	2535.2	133.5	735.7	4440.9	66.6	935.1	71.4
Sample /	51	UFF	//	725	66.3	LOD	835.4	21.7	123.2	1186.9	14.0	1/3.4	22.9
Sample 8	42	UFF	30	3	189.4	403.0	1459.7	55.5 0.7	1/1.4	803.1	15.5	218.9	30.9 17.5
Sample 10	30	UFF	0	20	524.0 603.6	471.4	4548.9	9.7 145 7	41.2 252.1	400.5 1955.4	4.0	49.7 858 1	54.6
Sample 11	47	UFF	31	11	117.8	591.3	1399.5	20.8	130.5	1403.5	25.9	260.3	27.1
Sample 12	52	UFF	16	304	49.3	118.7	706.9	17.2	74.4	344.5	3.6	60.5	17.6
Sample 13	38	UFF	44	58	418.3	1074.3	3052.3	32.3	130.2	2753.7	56.2	568.0	35.8
Sample 14	38	TFF	0	20	93.8	27.8	2001.4	32.1	87.1	403.4	21.6	247.2	15.9
Sample 15	66	TFF	13	2	430.4	658.0	4290.0	82.4	464.9	2608.3	35.4	527.8	52.5
Sample 16	60	TFF	0	2	207.2	660.1	2369.4	46.6	518.3	3226.9	10.4	260.1	42.1
Sample 17	23	TFF	11	3	159.8	128.8	2298.3	46.2	425.8	760.2	26.4	348.6	25.1
Sample 18	48	TFF	93	0	90.2	369.1	1108.9	10.5	51.9	1084.1	17.0	161.8	14.2
Sample 19	18	MC	0	n/a	550.1	2326.7	903.5	141.6	1175.8	1816.9	83.4	1186.6	73.9
Sample 20	42	MC	0	n/a	660.2	2356.5	2732.3	29.5	123.3	2279.2	55.4	608.9	39.9
Sample 21	44	MC	0	n/a	1/3.3	466.7	2093.1	34.2	48.8	1/63.5	55.7	553.4	25.0
Sample 22	24	IVIC	150	11/d 227	120.0	1939.5	0330.8	18.0	013.8	3809.9	09.3	829.7	04.8
Sample 23	36	UME	220	327 4059	130.9	200.9	2229.5	16.0	216.5	903.5 2081.2	9.2	60.0	10.6
Sample 25	17	LIME	0	1	557.0	208.6	4229.2	13.0	333.2	3361.8	42.6	596.9	50.9
Sample 26	20	UMF	149	14	120.1	456.2	3540.9	21.0	246.7	4109.0	13.7	224.0	45.6
Sample 27	25	UMF	353	150	54.2	148.0	760.1	18.0	79.3	369.2	3.4	61.6	18.5
Sample 28	50	TMF	187	1944	178.7	329.9	1267.2	41.3	202.9	931.8	5.8	109.3	20.3
Sample 29	58	TMF	111	3565	114.0	373.1	2086.7	16.7	220.6	1636.0	26.7	339.0	30.2
Sample 30	38	TMF	27	26	100.6	52.1	934.1	26.8	60.1	385.6	14.1	168.6	13.8
Sample 31	33	TMF	92	144	373.8	595.4	3861.2	75.7	411.4	2964.3	32.4	470.0	39.3
Sample 32	52	TMF	28	14	304.6	341.0	1423.1	30.2	295.1	877.6	9.7	159.0	27.6
Sample 33	59	TMF	107	351	154.7	LOD	1411.3	25.5	256.7	501.1	1.7	83.9	32.0
Sample 34	41	TMF	16	11	134.5	329.6	1015.5	35.6	74.5	1040.3	13.7	194.4	24.9
Sample 35	21	TMF	59	660	397.1	430.7	2260.7	20.6	25.7	939.1	35.6	365.0	28.9
Sample ID	Fe	Ni	Cu	Zn	As	Se	Rb	Sr	Мо	Sn	Ba	Hg	Pb
Sample ID Sample 1	Fe 1351 4	Ni 8 9	Cu 33 5	Zn 456.2	<i>As</i> 4 3	Se 76 3	Rb	Sr 74 5	Mo 77 4	Sn 2.3	Ba 1 4	Hg	Pb
Sample ID Sample 1 Sample 2	Fe 1351.4 678.6	Ni 8.9 -0.2	Cu 33.5 3.2	Zn 456.2 57.2	As 4.3 LOD	Se 76.3 LOD	Rb 1115.8 196.1	Sr 74.5 LOD	Mo 77.4 4.1	Sn 2.3 0.9	Ba 1.4 0.7	Hg 6.8 4.3	Pb 3.1 2.9
Sample ID Sample 1 Sample 2 Sample 3	<i>Fe</i> 1351.4 678.6 1027.1	Ni 8.9 -0.2 5.5	Cu 33.5 3.2 17.5	Zn 456.2 57.2 364.7	As 4.3 LOD 2.1	Se 76.3 LOD 13.4	Rb 1115.8 196.1 754.1	Sr 74.5 LOD 37.5	Mo 77.4 4.1 39.0	Sn 2.3 0.9 1.8	Ba 1.4 0.7 1.3	Hg 6.8 4.3 4.0	Pb 3.1 2.9 2.9
Sample ID Sample 1 Sample 2 Sample 3 Sample 4	Fe 1351.4 678.6 1027.1 1528.2	Ni 8.9 -0.2 5.5 4.0	Cu 33.5 3.2 17.5 28.8	Zn 456.2 57.2 364.7 89.8	As 4.3 LOD 2.1 4.8	Se 76.3 LOD 13.4 24.2	Rb 1115.8 196.1 754.1 1389.5	Sr 74.5 LOD 37.5 5.0	Mo 77.4 4.1 39.0 10.8	Sn 2.3 0.9 1.8 0.8	Ba 1.4 0.7 1.3 0.7	Hg 6.8 4.3 4.0 4.0	Pb 3.1 2.9 2.9 2.9
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5	<i>Fe</i> 1351.4 678.6 1027.1 1528.2 1627.5	Ni 8.9 -0.2 5.5 4.0 21.5	Cu 33.5 3.2 17.5 28.8 75.4	Zn 456.2 57.2 364.7 89.8 560.7	As 4.3 LOD 2.1 4.8 20.7	Se 76.3 LOD 13.4 24.2 165.4	Rb 1115.8 196.1 754.1 1389.5 4737.6	Sr 74.5 LOD 37.5 5.0 3.8	Mo 77.4 4.1 39.0 10.8 157.1	Sn 2.3 0.9 1.8 0.8 6.9	Ba 1.4 0.7 1.3 0.7 2.7	Hg 6.8 4.3 4.0 4.0 14.3	Pb 3.1 2.9 2.9 2.9 4.3
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6	<i>Fe</i> 1351.4 678.6 1027.1 1528.2 1627.5 1303.2	Ni 8.9 -0.2 5.5 4.0 21.5 19.3	Cu 33.5 3.2 17.5 28.8 75.4 40.4	Zn 456.2 57.2 364.7 89.8 560.7 559.4	As 4.3 LOD 2.1 4.8 20.7 16.7	Se 76.3 LOD 13.4 24.2 165.4 132.4	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7	Sr 74.5 LOD 37.5 5.0 3.8 146.9	Mo 77.4 4.1 39.0 10.8 157.1 126.2	Sn 2.3 0.9 1.8 0.8 6.9 8.6	Ba 1.4 0.7 1.3 0.7 2.7 5.1	Hg 6.8 4.3 4.0 4.0 14.3 6.7	Pb 3.1 2.9 2.9 2.9 4.3 4.2
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7	<i>Fe</i> 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7	Pb 3.1 2.9 2.9 4.3 4.2 4.0
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7 LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9	<i>Fe</i> 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 122.9	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 413.8	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.2 2.0	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10	<i>Fe</i> 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 29.7	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 202.1	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 20.0	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 1343.9	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 20.2	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 5 Sample 6 Sample 7 Sample 7 Sample 8 Sample 9 Sample 10 Sample 12	<i>Fe</i> 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 900 4	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 21.6	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 200.1	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 27.8	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD LOD 8.6 8.7	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 7 Sample 8 Sample 9 Sample 10 Sample 13	<i>Fe</i> 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304 1	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15 3	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 13.8 18.4	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD 8.6 0.7 0.4	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.5
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 7 Sample 7 Sample 8 Sample 9 Sample 10 Sample 13 Sample 14	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33 7	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25 5	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD LOD 8.6 0.7 0.4 0.9	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.4 3.5 3.7
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 7 Sample 10 Sample 11 Sample 12 Sample 14 Sample 15	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125 0	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 11.9 LOD 18.0	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67 3	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62 2	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87 2	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD LOD 8.6 0.7 0.4 0.9 7 9	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 14 Sample 15 Sample 16	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 3.3.7 2125.0 <i>IOD</i>	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 11.9 LOD 18.0 6.4	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1455.5 1960.3	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7 LOD LOD LOD LOD 8.6 0.7 0.4 0.9 7.9 LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.4 3.7 3.7 3.9 3.3
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 16 Sample 17	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 11.9 LOD 18.0 6.4 6.9	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD 150.7 23.8 87.2 0.0 42.2	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD LOD 8.6 0.7 0.4 0.9 7.9 LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 2.9
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 17 Sample 18	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 11.9 LOD 18.0 6.4 6.9 1.8	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD 8.6 0.7 0.4 0.9 7.9 LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 2.9 3.6
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 7 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD 563.5 LOD	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD 8.6 0.7 0.4 0.9 7.9 LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 2.9 3.6 3.6
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 7 Sample 8 Sample 10 Sample 10 Sample 11 Sample 11 Sample 13 Sample 14 Sample 15 Sample 16 Sample 18 Sample 18 Sample 19 Sample 20	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5 LOD 129.7	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD 8.6 0.7 0.4 0.9 7.9 LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 2.9 3.6 3.6 3.5
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 7 Sample 7 Sample 7 Sample 10 Sample 11 Sample 11 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD 563.5 LOD 129.7 317.8	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 2.9 3.6 3.6 3.5 3.3
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 7 Sample 7 Sample 7 Sample 7 Sample 7 Sample 10 Sample 10 Sample 11 Sample 12 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21 Sample 21 Sample 22	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5 LOD 129.7 317.8 2446.2	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3	<i>Sr</i> 74.5 <i>LOD</i> 37.5 5.0 3.8 146.9 19.5 55.6 <i>LOD</i> 233.9 <i>LOD</i> <i>LOD</i> 150.7 23.8 87.2 0.0 42.2 <i>LOD</i> 268.1 115.6 121.8 151.8	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD 8.6 0.7 0.4 0.9 7.9 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 7 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 18 Sample 19 Sample 20 Sample 21 Sample 22 Sample 23	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5 LOD 129.7 317.8 2446.2 263.8	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 2.1 2.1 2.1 2.1 2.1 2.	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 3.3	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD 8.6 0.7 0.4 0.9 7.9 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 2.9 3.6 3.6 3.5 3.3 4.4 3.6
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 7 Sample 7 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 19 Sample 21 Sample 21 Sample 23 Sample 24	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 87.5	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD LOD LOD	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 82.8 44.9 22.4	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 3.3 3.3 3.3	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.7 3.9 3.3 2.9 3.6 3.6 3.5 3.3 4.4 4.3 6 3.8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 14 Sample 15 Sample 18 Sample 19 Sample 20 Sample 21 Sample 22 Sample 22 Sample 23 Sample 24 Sample 25	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 753.8 753.8	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD LOD 19.2 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 4.7.1 4.5 5	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0 1.5 5.5 10.2 3.7 9.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 3.3 3.3 4.0	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.6 3.6 3.5 3.3 4.4 4.6 3.8 2.9 3.6 3.6 3.5 3.3 4.2 4.3 4.2 4.0 5.5 3.7 4.3 4.2 4.0 5.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21 Sample 22 Sample 23 Sample 24 Sample 25 Sample 26	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 753.8 2419.1 104.7 2125.2 205.2	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD 19.2 6.6 2 -	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2 59.6	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3 244.3 207.2	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 11.1 LOD	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 47.1 49.3	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8 1636.1 200.2	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2 18.0	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0 1.5 5.6 5.6 5.4	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 3.3 3.3 4.0 2.5 2.5 2.5 3.2 3.2 3.2 3.2 3.3 3.3 4.0 3.5 3.3 3.3 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 2.9 3.6 3.6 3.5 3.3 4.4 3.6 3.8 2.8 3.7 5 3.7 3.9 3.7 3.9 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.3
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21 Sample 22 Sample 22 Sample 23 Sample 24 Sample 25 Sample 26 Sample 26 Sample 28	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 753.8 2419.1 1047.2 142.2	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD 19.2 6.6 -0.1 LOD	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2 59.6 26.1 23.1	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3 244.3 267.3 244.3	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 11.1 LOD 1.7	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 47.1 49.3 9.4	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8 1636.1 300.3 412.2	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2 18.0 14.9 27.7	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0 1.5 5.6 8.4 40.4	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 3.3 3.3 4.0 2.5 2.0	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 2.9 3.6 3.6 3.5 3.3 4.4 4 3.6 3.5 3.3 4.2 4.3 5 3.7 3.5 3.7 3.5 3.7 3.5 3.3 4.2 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 7 Sample 10 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21 Sample 22 Sample 23 Sample 24 Sample 25 Sample 27 Sample 20	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 129.7 317.8 2446.2 263.8 87.5 753.8 2419.1 1047.2 142.8 114.9	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD 19.2 6.6 -0.1 LOD 2.5	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2 59.6 26.1 33.1 42.0	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3 244.3 267.3 417.4 632.6	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 11.1 LOD 1.7 LOD	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 47.1 49.3 9.4 5.7 9.6	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8 1636.1 300.3 418.3	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD LOD LOD LOD LOD LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2 18.0 14.9 27.7 20.7	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0 1.5 5.6 8.4 40.4 11.5	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 1.5 3.2 4.4 3.3 3.3 4.0 2.5 2.0 3.0 2.6	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.3 3.6 3.6 3.5 3.3 4.4 3.6 3.5 3.3 4.4 3.6 3.5 3.3 4.2 9 3.6 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 7 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 17 Sample 17 Sample 18 Sample 19 Sample 20 Sample 23 Sample 24 Sample 25 Sample 26 Sample 28 Sample 28 Sample 29 Sample 28	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 753.8 2419.1 1047.2 142.8 114.9 95.3	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD LOD LOD LOD LOD 19.2 6.6 -0.1 LOD 2.5 LOD	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2 59.6 26.1 33.1 42.0 13.7	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3 244.3 267.3 417.4 632.6 273.9	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 11.1 LOD 1.7 LOD 1.7 LOD 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 47.1 49.3 9.4 5.7 9.6 16.8	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8 1636.1 300.3 418.3 831.3 206.1	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD LOD LOD LOD LOD S.5 5.4.5 LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2 18.0 14.9 27.7 20.7 35.2	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0 1.5 5.6 8.4 40.4 11.5 4.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 1.5 3.2 4.4 3.3 4.0 2.5 2.0 3.0 2.5 2.0 3.0 3.0 3.9 3.9 3.9 5.2 4.4 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.4 3.5 3.7 3.9 3.6 3.6 3.5 3.3 4.4 3.6 3.5 3.3 4.4 3.6 3.5 3.3 4.4 3.6 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.6
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21 Sample 22 Sample 23 Sample 25 Sample 26 Sample 27 Sample 28 Sample 29 Sample 20 Sample 27 Sample 28 Sample 28 Sample 29	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 753.8 2419.1 1047.2 142.8 114.9 95.3 107.0	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD 19.2 6.6 -0.1 LOD 2.5 LOD	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2 59.6 26.1 33.1 42.0 13.7 51.7	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3 244.3 267.3 417.4 632.6 273.9 446.0	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 11.1 LOD 1.7 LOD 23.1	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 47.1 49.3 9.4 5.7 9.6 16.8 43.8	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8 1636.1 300.3 418.3 831.3 206.1 1611.8	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD LOD LOD LOD S5.5 54.5 LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2 18.0 14.9 27.7 20.7 20.7 35.2 39.1	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0 1.5 5.6 8.4 40.4 11.5 4.6 9.5	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 3.3 3.3 4.0 2.5 2.0 3.0 2.6 2.7 4.4 3.2 4.4 3.3 3.3 4.0 2.5 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	Hg 6.8 4.3 4.0 14.3 6.7 4.7 LOD LOD LOD 8.6 0.7 0.4 0.9 7.9 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3,1 2,9 2,9 4,3 4,2 4,0 3,1 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 14 Sample 15 Sample 16 Sample 16 Sample 17 Sample 18 Sample 18 Sample 20 Sample 20 Sample 21 Sample 22 Sample 23 Sample 24 Sample 25 Sample 26 Sample 27 Sample 28 Sample 29 Sample 30 Sample 31 Sample 32	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 753.8 2419.1 1047.2 142.8 114.9 95.3 107.0 1236.8	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD 19.2 6.6 -0.1 LOD 2.5 LOD 19.2 6.6 -0.1 LOD 2.5 LOD 10.3	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2 59.6 26.1 33.1 42.0 13.7 51.7 39.1	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3 244.3 267.3 417.4 632.6 273.9 446.0 345.6	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 11.1 LOD 1.7 LOD 1.4 3.1 1.4 4.5 3.5 1.4 5.7 1.9 1.9 1.4 5.6 2.1 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.4 5.7 1.9 1.0 1.1 2.1 2.1 2.1 2.1 2.1 1.9 1.4 3.5 1.2 1.0 1.1 2.1 LOD 1.1 2.1 LOD 1.1 2.1 LOD 1.5 3.5 1.2 1.0 1.5 1.0 1.1 1.0 1.1 LOD 1.7 1.4 3.5 1.1 LOD 1.7 1.4 3.5 1.1 LOD 1.7 1.0 1.1 LOD 1.7 LOD 1.7 LOD 1.7 LOD 1.7 LOD 1.7 LOD 1.7 LOD 1.7 LOD 1.7 LOD 1.7 LOD 1.7 LOD 2.3.1 4.5	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 47.1 49.3 9.4 5.7 9.6 16.8 43.8 16.5	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8 1636.1 300.3 418.3 831.3 206.1 1611.8 686 1	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD LOD LOD LOD LOD S54.5 LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2 126.3 17.1 19.4 67.2 18.0 14.9 27.7 20.7 35.2 39.1 215	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0 1.5 5.6 8.4 40.4 11.5 9.5 3.6	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 3.3 3.3 4.0 2.5 2.0 3.0 2.6 2.5 2.0 3.0 2.6 2.7 5.2 4.4 5.2 4.4 5.2 4.4 5.2 4.4 5.2 5.2 4.4 5.2 5.2 4.4 5.2 5.2 4.4 5.2 5.2 4.4 5.2 5.2 4.4 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 16 Sample 16 Sample 17 Sample 18 Sample 18 Sample 20 Sample 20 Sample 21 Sample 22 Sample 22 Sample 23 Sample 24 Sample 25 Sample 26 Sample 27 Sample 28 Sample 29 Sample 30 Sample 31 Sample 31	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 753.8 2419.1 1047.2 142.8 114.9 95.3 107.0 1236.8 756.8	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD 19.2 6.6 -0.1 LOD 19.2 6.6 -0.1 LOD 10.3 7.9	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2 59.6 26.1 33.1 42.0 13.7 51.7 39.1 49.3	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3 244.3 267.3 417.4 632.6 273.9 446.0 345.6 552.6	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 11.1 LOD 1.7 LOD 23.1 4.5 3.0	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 47.1 49.3 9.4 5.7 9.6 16.8 43.8 16.5 12.8	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8 1636.1 300.3 418.3 831.3 206.1 1611.8 686.1 339.3	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2 126.3 17.1 19.4	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.1 2.9 6.2 8.0 1.5 5.6 8.4 40.4 11.5 3.6 3.6 3.6 8.5	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 3.3 3.3 4.0 2.5 2.0 3.0 2.6 2.5 4.7 5.2 4.3	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Sample ID Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 10 Sample 10 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample 15 Sample 15 Sample 16 Sample 17 Sample 18 Sample 19 Sample 20 Sample 21 Sample 22 Sample 22 Sample 22 Sample 23 Sample 24 Sample 25 Sample 26 Sample 27 Sample 28 Sample 29 Sample 31 Sample 31 Sample 34	Fe 1351.4 678.6 1027.1 1528.2 1627.5 1303.2 707.1 822.1 1013.8 2403.6 1638.2 896.4 1304.1 33.7 2125.0 LOD 563.5 LOD 129.7 317.8 2446.2 263.8 87.5 753.8 2419.1 1047.2 142.8 114.9 95.3 107.0 1236.8 756.8 LOD	Ni 8.9 -0.2 5.5 4.0 21.5 19.3 4.5 9.7 5.4 26.9 8.7 LOD 11.9 LOD 18.0 6.4 6.9 1.8 14.4 7.7 4.9 14.9 LOD 19.2 6.6 -0.1 LOD 19.2 6.6 -0.1 LOD 10.3 7.9 4.1	Cu 33.5 3.2 17.5 28.8 75.4 40.4 48.7 28.3 15.0 69.6 26.7 24.6 62.9 25.5 67.3 46.7 44.6 145.3 31.6 46.9 38.8 82.8 44.9 22.4 66.2 59.6 26.1 33.1 42.0 13.7 51.7 39.1 49.3 25.4	Zn 456.2 57.2 364.7 89.8 560.7 559.4 500.0 300.2 122.9 693.0 200.1 224.0 124.4 200.7 393.1 655.9 511.8 118.6 1183.3 487.3 598.0 822.3 607.9 405.1 996.3 244.3 267.3 417.4 632.6 273.9 446.0 345.6 552.6 289.4	As 4.3 LOD 2.1 4.8 20.7 16.7 1.4 5.3 LOD 20.0 13.9 LOD 15.3 LOD 33.5 12.6 5.7 1.9 18.8 11.9 5.6 21.1 2.1 LOD 14.3 11.1 LOD 1.7 LOD 23.1 4.5 3.0 3.4	Se 76.3 LOD 13.4 24.2 165.4 132.4 11.8 19.1 0.3 52.9 26.3 7.2 27.2 LOD 62.2 33.7 20.7 0.0 186.3 38.6 17.0 91.2 22.8 8.5 47.1 49.3 9.4 5.7 9.6 16.8 43.8 16.5 12.8 51.7	Rb 1115.8 196.1 754.1 1389.5 4737.6 2565.7 642.7 840.9 413.8 1343.9 843.0 280.1 1454.5 217.8 1425.5 1960.3 455.3 659.9 1617.0 1420.3 924.1 1629.3 764.2 1090.2 1519.8 1636.1 300.3 418.3 831.3 206.1 1611.8 686.1 339.3 665.5	Sr 74.5 LOD 37.5 5.0 3.8 146.9 19.5 55.6 LOD 233.9 LOD LOD 150.7 23.8 87.2 0.0 42.2 LOD 268.1 115.6 121.8 151.8 28.8 LOD LOD LOD LOD LOD LOD D S.5 54.5 LOD 95.2 34.5 LOD LOD	Mo 77.4 4.1 39.0 10.8 157.1 126.2 13.8 4.8 10.7 49.2 27.8 13.8 18.4 9.7 42.8 53.8 34.3 5.9 64.7 79.2 41.2 126.3 17.1 19.4 67.2 18.0 14.9 27.7 20.7 35.2 39.1 21.5 13.4 41.8	Sn 2.3 0.9 1.8 0.8 6.9 8.6 9.2 2.0 1.5 8.1 6.5 10.2 3.7 9.1 1.5 0.5 19.9 50.6 3.6 3.1 2.9 6.2 8.0 1.5 5.6 8.4 40.4 11.5 4.6 9.5 3.6 8.5 0.8	Ba 1.4 0.7 1.3 0.7 2.7 5.1 3.9 5.2 4.4 5.2 2.1 1.6 2.7 4.8 6.8 4.2 4.8 6.8 4.2 4.8 6.8 4.2 4.8 2.7 4.4 1.5 3.2 4.4 1.5 3.2 4.4 3.3 3.3 4.0 2.5 2.0 3.0 2.6 2.5 4.7 5.2 4.4 3.3 3.3 4.0 2.5 2.0 3.0 2.5 4.4 3.2 4.4 3.3 3.3 4.0 2.5 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	Hg 6.8 4.3 4.0 4.0 14.3 6.7 4.7 LOD LOD LOD LOD LOD LOD LOD LOD	Pb 3.1 2.9 2.9 4.3 4.2 4.0 3.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.7 3.9 3.3 2.9 3.6 3.6 3.6 3.5 3.3 4.4 4.3 6 3.5 3.3 4.4 4.3 6 3.6 3.5 3.5 3.5 3.5 3.6 3.6 3.6 3.6 3.5 3.5 3.5 3.5 3.5 3.5 3.6 3.6 3.6 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Fig. 3. Trend plot for barium for untreated female Fabry patients (UFF, n = 9, samples 5–13) versus urine of female controls (FC, n = 4, samples 1–4).

compared to other metals studied. Boron was discriminated in only 4 out of 5 patients (data not shown). In Fig. 6, a trend plot for strontium in untreated Fabry patients (n=5) versus urine of male controls (n=4) is presented. Urinary strontium values were found to be lower in all male Fabry patients under study.

Fig. 7 presents scoring plot results from OPLS-DA of female Fabry patients (n = 14) versus female controls (n = 4), independent of treatment. Both groups are well separated. Fig. 8 shows OPLS-DA scoring plot results of male Fabry patients (MF, n = 13) versus male controls (MC, n = 4), independent of treatment where Fabry samples were not as well discriminated. Fig. 9 presents the S-plot for female controls (n = 4) and female Fabry patients (n = 14) independent of treatment, for all 21 isotopes. Fig. 10 shows a S-plot for male controls (n = 4) and male Fabry patients (n = 13) independent of treatment, for all 21 isotopes. Barium was definitely discriminated in both male and female cohorts (only female results shown in Fig. 11), whereas calcium and strontium were only discriminated in male Fabry patients (see Figs. 12 and 13). Preliminary results presented for treated and untreated Fabry disease patients (Fig. 2 *versus* Fig. 9, and Fig. 5 *versus* Fig. 10) indicate that ERT seems to have little effect on urine elements analyzed. Nevertheless, studies on larger cohorts of patients are needed (considering that two ERT products and different doses were used) to draw definite conclusions.

Fig. 4. Scoring plot results of untreated male Fabry patients (UMF, n = 5, samples 23–27) versus male controls (MC, n = 4, samples 19–22).

Fig. 5. S-plot statistical analysis to target specific isotopes of interest from 21 different isotopes studied in untreated male Fabry patients (*n*=5) and controls (*n*=4). Calcium and strontium isotopes gave a positive discrimination, whereas boron was not discriminant in all male patients studied.

Fig. 6. Trend plot for strontium in untreated male Fabry patients (UMF, n = 5, samples 23-27) versus urine of male controls (MC, n = 4, samples 19-22).

Table 3

Absolute values of significant correlations between urine lyso-Gb₃/creatinine and Gb₃/creatinine with different metals: calcium, titanium, tin, nickel, and mercury.

Globotriaosylsphingosine (lyso-Gb ₃)	Ca	Ti	Sn
Spearman correlation coefficients	0.41980	0.38674	0.64667
Prob > r under H0: Rho = 0	0.0121	0.0217	<0.0001
Number of observations	35	35	35
Globotriaosylceramide (Gb ₃)	Ni	Sn	Hg
Spearman correlation coefficients	0.46553	0.48596	0.45025
Prob> r under H0: Rho=0	0.0144	0.0102	0.0184
Number of observations	27	27	27

Fig. 7. Scoring plot results of all female Fabry patients (FF, n = 14, samples 5–18) versus female controls (FC, n = 4, samples 1–4).

Data in Table 3 show that significant statistical correlations were obtained for several elements *versus* Gb₃/creatinine and lyso-Gb₃/creatinine as demonstrated by relatively high Spearman correlation coefficients. Table 4 presents statistically significant

slopes between the dependent variables lyso-Gb₃/creatinine and Gb₃/creatinine compared to different element levels Mg, Cu, Hg, Ni, Pb, Ba, Ca. We found in all Fabry patients (males and females, treated or untreated): (1) high urinary levels of lyso-Gb₃/creatinine

Fig. 8. Scoring plot results of male Fabry patients (MF, n = 13, samples 23–35) versus male controls (MC, n = 4, samples 19–22).

Fig. 9. S-plot for female controls (*n* = 4) and female Fabry patients (*n* = 14) independent of treatment, for all 21 isotopes.

S-Plot (MC = -1, MF = 1)

Fig. 10. S-plot for male controls (*n* = 4) and all male Fabry patients (*n* = 13) independent of treatment, for all 21 isotopes.

Fig. 11. Trend plot for barium from all female Fabry patients (FF, n = 14, samples 5–18) versus female controls (FC, n = 4, samples 1–4).

EZinfo 2 - 2010_10_22_PCA_OPLSDA_MC_MF (M2: OPLS-DA) - 2011-02-02 15:28:00 (UTC-5)

Fig. 12. Trend plot for calcium from all male Fabry patients (MF, n = 13, samples 23–35) versus male controls (MC, n = 4, samples 19–22).

Fig. 13. Trend plot for strontium from all male Fabry patients (MF, n = 13, samples 23–35) versus male controls (MC, n = 4, samples 19–22).

Table 4

Results obtained from a multivariate analysis between the dependent variables lyso-Gb₃ and Gb₃ compared to different significant element levels such as Mg, Ni, Cu, Hg, Pb, Ba, and Ca.

Globotriaosylsphingosine (lyso-Gb ₃)	Mg	Ni	Cu	Hg	Pb
Slope estimate	0.02432	-0.2336	0.02527	0.2579	-1.4601
Pr> t	0.0171	0.0001	0.0175	0.0024	0.0720
Number of observations	26	26	26	26	26
Globotriaosylceramide (Gb ₃)	Ва	Ca	Pb	Hg	Ni
Slope estimate	5.142	1.278	-6.38200	-1.191	-1.087
Pr > t	0.0012	0.0011	0.0101	0.0168	0.0009
Number of observations	26	26	26	26	26

corresponding to high urinary levels of excretion of magnesium (Mg), copper (Cu) and mercury (Hg) and low levels of nickel (Ni) and lead (Pb); and (2) high urinary levels of Gb₃/creatinine corresponding to high urinary levels of excretion of barium (Ba) and calcium (Ca) but low levels of lead (Pb), mercury (Hg) and nickel (Ni). However, no significant slope correlations were found between urine lyso-Gb₃/creatinine or Gb₃/creatinine levels and the rest of the 15 elements under study.

Further investigations will focus on the development and applications of a sensitive analytical technique to analyze metal, metalloid and other element concentrations in urine samples dried on filter paper using laser ablation (LA) ICP-MS.

4. Conclusion

In this study, we devised an ICP-MS methodology for metals and other elements for quantification analysis in urine specimens of treated and untreated Fabry hemizygotes (males) and heterozygotes (females). We used LC–MS/MS methodologies developed previously to analyze lipids such Gb₃ and lyso-Gb₃ in these same patients [15,17,18,23], in order to evaluate correlations between metals, and other elements *versus* lipids in urine specimens of Fabry patients *versus* controls. To our knowledge, this is the first documented quantitative analysis of urinary metals and other elements in the urine of Fabry patients compared with specific biomarkers related to Fabry disease.

We found that the excretion of barium was elevated in Fabry females and calcium and strontium levels were lower in Fabry males compared to controls. Our preliminary results show that the enzyme replacement therapy treatment had a minor effect upon the urinary excretion of barium, calcium, and strontium elements in both male and female Fabry disease patients. Studies on larger cohorts would make it possible to evaluate the influence of other factors such as diet, medication, and kidney function parameters on urinary excretion of elements.

Statistically significant correlations were established between urinary lyso-Gb₃/creatinine, Gb₃/creatinine and levels of magnesium, copper, mercury, nickel, lead, barium and calcium. However, no significant correlations were found between urine lyso-Gb₃/creatinine or Gb₃/creatinine levels and the rest of the 15 elements under study. No statistical analysis is shown comparing controls *versus* Fabry disease patients because of the small numbers in each cohort.

Our results indicate that further studies are warranted in larger cohorts of Fabry disease patients for the investigation of possible roles of metals and other elements. Because heavy metals disturb enzyme functions and cellular signalling processes and generate oxidative stress which can lead to the programmed cell death of the cell (apoptosis), they could also play either a more basic or a modulating role [24] in the quite heterogeneous phenotype related to Fabry disease.

Acknowledgements

This research was funded by a grant-in-aid of research from Genzyme and the Canadian Institutes of Health Research (Operating Grant#: 179883) for Gb₃ and lyso-Gb₃ analysis. We are grateful to Waters Corporation for their continued scientific support and partnership (Dr Auray-Blais' lab). Metals and other elements analysis were possible through instrumental support by Thermo Fisher Scientific in Dr Becker's BrainMet Laboratory, Central Division of Analytical Chemistry in Jülich, Germany. We are thankful to the patients with Fabry disease for their cooperation. Without them this study would not have been possible. The funding organization played no role in the design of the study, choice of enrolled patients, review and interpretation of data, and preparation or approval of manuscript.

References

- J.S. Becker, D. Salber, New mass spectrometric tools in brain research, Trends Anal. Chem. 29 (9) (2010) 966–979.
- [2] J.S. Becker, M. Zoriy, A. Matusch, B. Wu, D. Salber, C. Palm, S. Becker, Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Mass Spectrom. Rev. 29 (1) (2010) 156–175.
- [3] J.S. Becker, Inorganic Mass Spectrometry: Principles and Applications, John Wiley and Sons, Chichester, 2007.
- [4] J.S. Becker, M. Burow, S.F. Boulyga, C. Pickhardt, R. Hille, P. Ostapczuk, ICP-MS determination of uranium and thorium concentrations and ²³⁵U/²³⁸U isotope ratios at trace and ultratrace levels in urine, Atomic Spec. 23 (2002) 177–182.
- [5] M.V. Zoriy, C. Pickhardt, P. Ostapczuk, R. Hille, J.S. Becker, Determination of Pu in urine at ultratrace level by sector field inductively coupled plasma mass spectrometry, Int. J. Mass Spectrom. 232 (2004) 217–224.
- [6] B.L. Batista, J.L. Rodrigues, L. Tormen, A.J. Curtius, F. Barbosa, Reference concentrations for trace elements in urine for the Brazilian population based on q-ICP-MS with a simple dilute-and-shoot procedure, J. Braz. Chem. Soc. 20 (2009) 1406–1413.
- [7] Ö. Yorbik, I. Kurt, A. Haşimi, Ö. Öztürk, Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls, Biol. Trace Elem. Res. 135 (2009) 10–16.
- [8] P. Heitland, H.D. Koster, Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS, Clin. Chim. Acta 365 (1–2) (2006) 310–318.
- [9] P. Heitland, H.D. Koster, Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS, J. Anal. Atom. Spec. 19 (12) (2004) 1552–1558.
- [10] I. Rodushkin, F. Ödman, Application of inductively coupled plasma sector field mass spectrometry for elemental analysis of urine, J. Trace Elem. Med. Biol. 14 (4) (2001) 241–247.
- [11] A.T. Townsend, A.K.A. Miller, S. McLean, S. Aldous, The determination of copper, zinc, cadmium and lead in urine by high resolution ICP-MS, J. Anal. Atom. Spec. 13 (11) (1998) 1213–1219.
- [12] F. Platt, S.U. Walkley, Lysosomal Disorders of the Brain, Recent Advances in Molecular and Cellular Pathogenesis and Treatment, Oxford University Press, New York, 2004.
- [13] W.R. Wilcox, Lysosomal storage disorders: the need for better pediatric recognition and comprehensive care, J. Pediatr. 144 (5 Suppl.) (2004) S3–S14.
- [14] J.T.R. Clarke, Narrative review: Fabry disease, Ann. Int. Med. 146 (2007) 425-433.
- [15] C. Auray-Blais, D. Cyr, K. Mills, R. Giguère, R. Drouin, Development of a filter paper method potentially applicable to mass and high-risk urinary screenings for Fabry disease, J. Inherit. Metab. Dis. 30 (1) (2007) 106.
- [16] C. Auray-Blais, D. Cyr, R. Drouin, Quebec Neonatal Mass Urinary Screening Programme: from micromolecules to macromolecules, J. Inherit. Metab. Dis. 30 (4) (2007) 515–521.
- [17] C. Auray-Blais, D. Cyr, R. Drouin, J.T.R. Clarke, D.S. Millington, Use of urinary globotriaosylceramide for Fabry screening in Canada, Clin. Therap. 30 (Suppl. C) (2008) S79–S80.
- [18] C. Auray-Blais, D. Cyr, A. Ntwari, M.L. West, J. Cox-Brinkman, D.G. Bichet, D.P. Germain, R. Laframboise, S.B. Melançon, T. Stockley, J.T.R. Clarke, R. Drouin, Urinary globotriaosylceramide excretion correlates with the genotype in children and adults with Fabry disease, Mol. Genet. Metab. 93 (2008) 331–340.
- [19] C. Auray-Blais, J.T.R. Clarke, S.P. Young, D.S. Millington, R. Schiffmann, Proposed high-risk screening protocol for Fabry disease in patients with renal and vascular disease, J. Inherit. Metab. Dis. 32 (2) (2009) 303–308.
- [20] R. Schiffmann, S. Waldek, A. Benigni, C. Auray-Blais, Biomarkers of Fabry disease nephropathy, Clin. J. Am. Soc. Nephrol. 5 (2) (2010) 360-364.
- [21] R. Schiffmann, J.B. Kopp, H.A. Austin, S. Sabnis, D.F. Moore, T. Weibel, J.E. Balow, R.O. Brady, Enzyme replacement therapy in Fabry disease: a randomized controlled trial, JAMA 285 (2001) 2743–2749.
- [22] D.P. Germain, S. Waldek, M. Banikazemi, D.A. Bushinsky, J. Charrow, R.J. Desnick, P. Lee, T. Loew, A.C. Vedder, R. Abichandani, W.R. Wilcox, N. Guffon, Sustained, long-term renal stabilization after 54 months of Agalsidase β therapy in patients with Fabry disease, Am. Soc. Nephrol. 18 (2007) 1547–1557.
- [23] C. Auray-Blais, A. Ntwari, J.T.R. Clarke, D. Warnock, J.P.F.S. Oliveira, S.P. Young, D.S. Millington, D.G. Bichet, S. Sirrs, M.L. West, R. Casey, W.L. Wu, J. Keutzer, K. Zhang, R. Gagnon, How well does urinary lyso-Gb₃ function as a biomarker in Fabry disease? Clin. Chim. Acta 411 (2010) 1906–1914.
- [24] Ö. Yorbik, I. Kurt, A. Haşimi, Ö. Öztürk, Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls, Biol. Trace Elem. Res. 135 (2010) 10–15.